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Perhaps the best algorithm for the first would again be Serret's, starting from the 
fact that this prime divides a specific Fermat number. 
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20[F].-M. F. JONES, M. LAL & W. J. BLUNDON, Table of Primes, Memorial Uni- 
versity of Newfoundland, St. John's, Newfoundland, Canada, June 1966, ms. 
of 100 computer sheets, 28 cm. Copy deposited in the UMT file. 

This table lists all 47273 primes in the eight ranges: 

10 (1)10- + 150,000; n = 8 (1) 15. 

It, and its statistics, have been discussed earlier in this journal [1]. As indicated in 
[1], the primes were computed on an IBM 1620. They are verv nicely printed, in an 
elegant format, 500 to the page. Anyone familiar with programming would note 
at once the great care that must have been taken here to produce such a format. 

The range 1012(1)1012 + 104 was checked against Kraitchik's 335 primes in [2], 
with perfect agreement. (Kraitchik's tables are seldom that accurate.) For n = 9, 
a successful spot check was made against Beeger's manuscript table [3]. 
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120, etc., deposited in the UMT file and reviewed in UMT 68, Math. Comp., v. 20, 1966, p. 456. 

21[F, G].-L. D. BAUMERT & H. FREDRICKSEN, The Cyclotomic Numbers of Order 
Eighteen, Jet Propulsion Laboratory, California Institute of Technology, 18 
computer sheets deposited in the UMT file. 

This table presents the cyclotomic numbers of order eighteen. The derivation 
and computation of these formulas are described adequately in Section 4 of the 
authors' paper which appears elsewhere in this journal [1]. 

The identities (2.2) in the paper enable one to group the 324 cyclotomic con- 
stants (h,k), 0 < h, k < 17, into 64 sets. There is a formula for each set, depending 
on ind 2 (mod 9) and ind 3 (mod 6). Thus there are 54 cases, each with 64 formulas. 
The table consists of the formulas for sixteen cases; the other formulas can be 
derived from these formulas. Table 5 of the paper is one of the cases given in the 
table. 

It is interesting to note that not all the formulas in a given case are different. 

For example, in Table 5, (0,3) = (0,6), (1,2) = (1,8) = (2,7) = (2,16), (1,5) = 

(1,17) = (2,1) = (5,1), and (1,14) = (2,4) = (4,2) = (4,5). 
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